Assessing Application Vulnerability to Radiation-Induced SEUs in Memory

Paul L. Springer
Jet Propulsion Laboratory
California Institute of Technology
Paul Springer@jpl.nasa.gov

1. Introduction

One of the goals of the Remote Exploration and
Experimentation (REE) project at JPL is to determine
how vulnerable applications are to single event upsets
(SEUs) when run in low radiation space environments
using commercial-off-the-shelf (COTS) components [1].
Studies have shown that when bit flips are randomly
injected into the processor or memory, simulating the
effects of SEUs, a large percentage of them may have no
effect on the program running [2].

Various explanations have been given to clarify the
circumstances under which a fault does not affect
program correctness. In Koga, et al [3], a description is
given of the duty cycle of each register in the processor--
the percentage of time during which the register contents
are vulnerable to an SEU. Benso, et al [4], analyze why
faults injected into either code or data space can be
ineffective. He defines the life period for a program
variable to be a period of time between when a value is
written to the variable, and the last point at which that
value is read by the processor. Any faults injected into
the variable outside of a life period for the variable will
be ineffective. Similarly, a fault injected into an
instruction after the very last time that instruction is
executed will have no effect.

This reasoning carries over into the analysis of the
effects of SEUs on a program. Assuming a particular
hardware configuration for a computer, and an
environment where the level of radiation is fairly
constant, the frequency with which SEUs affect the
program RAM is proportional to the amount of RAM
used and the length of time it is in use [5]. Therefore the
important measure of a program's susceptibility to SEUs
in this environment can be expressed in units of MB x
seconds. This work defines such a measure and explores
its usefulness.

2. Data Vulnerability

©2001, Paul L. Springer

There can be several reasons why an SEU that occurs
in the part of RAM dedicated to holding data has no
effect on the processor or application. First, the fault
might occur in a part of memory that is never accessed.
Secondly, the location containing the flipped bit may
have been previously used, but is no longer accessed after
the fault occurs. A third possibility is that the faulty
memory location is overwritten with correct data, after
the fault occurs, but before it is read by the processor.

The idea of a variable's life period can be clarified by
Figure 1. The variable pictured is first uninitialized, and
not susceptible to an SEU. At the point in time labeled
"w0", it is first written to, and remains vulnerable until
the second read, r1. After rl, it is invulnerable until w2,

WwWo 10 Tl w2 13

| — -,

to

Figure 1. Vulnerability of a variable

and stays vulnerable until r3 occurs. The white portions
in the figure are the periods in time of the variable's life
period, when it is vulnerable to SEUs.

To formalize this, let us say that a byte of memory is
vulnerable at any point in time if an SEU occurring at that
time would be read by the processor. Another way of
saying this is that a byte is vulnerable at any point during
its life period. Define the vulnerability (expressed in
units of byte-seconds) of that byte, V, to be numerically
equal to the number of seconds during an application run
when it is vulnerable. Then the data vulnerability of an
application, V,, is the sum of the V, measure for each
byte in the data segment of the application. It is most
conveniently expressed in units of MB-seconds. Note
that the vulnerability profile of an application can change
depending on the input data and the actual path the
program takes through its code. In this paper application



vulnerability will refer to a particular run of an
application.

3. Code Vulnerability

The code vulnerability of an application, V_, can be
calculated in a similar manner. Once an instruction is
loaded into memory, it remains vulnerable until the last
point in time at which it is read by the processor.
Summing the vulnerabilities of each byte of code space
will result in the V., measure of the code for that
application run.

The code vulnerability profile of an application plots
the number of code bytes vulnerable at any instant of time
against time. Figure 2 (not drawn to scale) shows the
profile for a 1 MB application that runs through most its
code sequentially and spends the remainder of its time (95
seconds) looping in the final 3 KB of code. The
application runs immediately after being loaded, and is
not run a second time unless it is reloaded. The profile
function is non-increasing and its integral is V,, about
2.79 MB-seconds in this case.

1MB
]

Memory

3KB

\

! Time '
tots t100

Figure 2. Code vulnerability profile

4. Vulnerability Tradeoffs

As long as code and data spaces are both in RAM,
where there is an equal chance of SEU occurrence, the
two vulnerabilities discussed can be combined to deduce
total application vulnerability in data and code space.
Application designers can use this information to predict
how changes will affect overall application vulnerability.

Suppose, for example, a designer is considering the
use of an Algorithm Based Fault Tolerant (ABFT) routine
that would protect a 2 MB array from the affects of an
SEU. This change would be made to the application
which has the profile shown in Figure 2. Assume
furthermore that the routine does not add a significant
amount of code, but does cost 3 seconds of run time

immediately after the program starts. Finally, let us say
that the array to be protected is vulnerable for 1 second
during the program run. The additional 3 seconds of run
time of the ABFT routine will affect the left-most part of
the profile shown, adding 3 MB-seconds to V. The
ABFT protection of the array has the same effect as a
decrease of 2 MB-seconds in the value of V,. So the net
combined effect is to increase the program vulnerability
by 1 MB-second, worsening the fault tolerance of the
application.

5. Summary

The contribution of this paper is to define two metrics

V, and V,, that can be used to measure the vulnerability

of the code and data spaces of an application to the effects

of SEUs. These metrics are important for at least 4

reasons.

1. They form an important determinant in predicting to
what extent an application will be completely
unaffected by SEUs or injected faults.

2. They allow comparison between programs of their
degree of vulnerability.

3. They help developers measure the effect code
modifications on vulnerability.

4. They assist the evaluation of tradeoffs between code
and data vulnerability.

For a broader discussion of this topic, see
http://hpc.jpl.nasa.gov/PEP/pls/papers/Fault_analysis.pdf

6. Acknowledgements

This work was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

Appreciation is expressed to Daniel S. Katz, E. Robert
Tisdale, and the anonymous reviewers of the paper
originally submitted to the conference, for their reviews
and comments.

7. References

[1] D. S. Katz and P. L. Springer, "Development of a
Spaceborne Embedded Cluster," IEEE International Conference
on Cluster Computing (CLUSTER2000), Chemnitz, Germany,
November 2000.

[2] H. Madeira and J.G. Silva, "Experimental Evaluation of the
Fail-silent Behavior in Computers Without Error Masking," Int.
Symp. Fault-Tolerant Computing, FTCS-24, IEEE, Jun. 1994,
pp- 350-359.



[3]1 R. Koga, W. A. Kolasinski, and M. T. Marra, "Techniques
of Microprocessor Testing and SEU-Rate Prediction,” /EEE
Transactions on Nuclear Science, Vol. 32, No. 6, December
1985, pp. 4219-4224.

[4] A. Benso, M. Rebaudengo, L. Impagliazzo, P. Marmo,
"Fault-List Collapsing for Fault-Injection Experiments,” 7998
Proceedings Annual Reliability and Mainiainability Symposium,
1998, pp. 383-388.

[5] P. E. Lewkowicz and L. J. Richter, "Single-Event Upsets in
Spacecraft Digital Systems," IS4 Transactions, Vol. 24, No. 4,
1985, pp. 45-48.



